Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence

A large-eddy simulation (LES) framework with an "eddy injection'' technique has been developed that ensures a majority of turbulent kinetic energy in numerically simulated tornado-like vortices is represented by resolved eddies. This framework is used to explore the relationships between environmental forcing mechanisms, surface boundary conditions, and tornado vortex structure, intensity, and wind gusts. Similar to previous LES studies, results show that the maximum time-and azimuthal-mean tangential winds {V}(max) can be well in excess of the "thermodynamic speed limit,'' which is 66ms(-1) for most of the simulations. Specifically, fVgmax exceeds this speed by values ranging from 21% for a large, high-swirl vortex to 59% for a small, low-swirl vortex. Budgets of mean and eddy angular and radial momentum are used to show that resolved eddies in the tornado core act to reduce the wind speed at the location of fVgmax, although they do transport angular momentum downward into the lowest levels of the boundary layer, increasing lowlevel swirl.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Nolan, David S.
Dahl, Nathan A.
Bryan, George H.
Rotunno, Richard
Publisher UCAR/NCAR - Library
Publication Date 2017-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:14:23.404591
Metadata Record Identifier edu.ucar.opensky::articles:19781
Metadata Language eng; USA
Suggested Citation Nolan, David S., Dahl, Nathan A., Bryan, George H., Rotunno, Richard. (2017). Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d78c9z5n. Accessed 31 January 2025.

Harvest Source