Identification

Title

Tornado vortex structure, intensity, and surface wind gusts in large-eddy simulations with fully developed turbulence

Abstract

A large-eddy simulation (LES) framework with an "eddy injection'' technique has been developed that ensures a majority of turbulent kinetic energy in numerically simulated tornado-like vortices is represented by resolved eddies. This framework is used to explore the relationships between environmental forcing mechanisms, surface boundary conditions, and tornado vortex structure, intensity, and wind gusts. Similar to previous LES studies, results show that the maximum time-and azimuthal-mean tangential winds {V}(max) can be well in excess of the "thermodynamic speed limit,'' which is 66ms(-1) for most of the simulations. Specifically, fVgmax exceeds this speed by values ranging from 21% for a large, high-swirl vortex to 59% for a small, low-swirl vortex. Budgets of mean and eddy angular and radial momentum are used to show that resolved eddies in the tornado core act to reduce the wind speed at the location of fVgmax, although they do transport angular momentum downward into the lowest levels of the boundary layer, increasing lowlevel swirl.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d78c9z5n

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:14:23.404591

Metadata language

eng; USA