Subseasonal forecast skill improvement from Strongly Coupled Data Assimilation with a Linear Inverse Model

Strongly coupled data assimilation (SCDA), such as using atmospheric observations to update ocean analyses, is critical for properly initializing Earth System models to predict subseasonal to decadal timescales. We show that a Kalman filter with a linear emulator of the coupled dynamics can be used to efficiently assimilate observations with SCDA. A linear inverse model (LIM), trained on 25 years of Climate Forecast System Reanalysis gridded data, is used to assimilate observations daily during an independent 7-year period. SCDA sea-surface temperature (SST) analysis errors are reduced over 20% in global-mean mean-squared error relative to a control experiment where only SST observations are assimilated with an SST LIM. The analysis improvements enhance forecast skill for leads of at least 50 days. In contrast, extratropical Northern Hemisphere 2 m air temperature forecast errors increase for coupled data assimilation in these experiments, despite reduction during the training period.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2022 American Geophysical Union


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Hakim, Gregory J.
Snyder, Chris
Penny, Stephen G.
Newman, Matthew
Publisher UCAR/NCAR - Library
Publication Date 2022-06-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:19:00.323662
Metadata Record Identifier edu.ucar.opensky::articles:25506
Metadata Language eng; USA
Suggested Citation Hakim, Gregory J., Snyder, Chris, Penny, Stephen G., Newman, Matthew. (2022). Subseasonal forecast skill improvement from Strongly Coupled Data Assimilation with a Linear Inverse Model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7s75m2x. Accessed 31 January 2025.

Harvest Source