Identification

Title

Subseasonal forecast skill improvement from Strongly Coupled Data Assimilation with a Linear Inverse Model

Abstract

Strongly coupled data assimilation (SCDA), such as using atmospheric observations to update ocean analyses, is critical for properly initializing Earth System models to predict subseasonal to decadal timescales. We show that a Kalman filter with a linear emulator of the coupled dynamics can be used to efficiently assimilate observations with SCDA. A linear inverse model (LIM), trained on 25 years of Climate Forecast System Reanalysis gridded data, is used to assimilate observations daily during an independent 7-year period. SCDA sea-surface temperature (SST) analysis errors are reduced over 20% in global-mean mean-squared error relative to a control experiment where only SST observations are assimilated with an SST LIM. The analysis improvements enhance forecast skill for leads of at least 50 days. In contrast, extratropical Northern Hemisphere 2 m air temperature forecast errors increase for coupled data assimilation in these experiments, despite reduction during the training period.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7s75m2x

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-06-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:19:00.323662

Metadata language

eng; USA