Relationship of multiwavelength radar measurements to ice microphysics from the IMPACTS field program

Coincident radar data with Doppler radar measurements at X, Ku, Ka, and W bands on the NASA ER-2 aircraft overflying the NASA P-3 aircraft acquiring in situ microphysical measurements are used to characterize the rela-tionship between radar measurements and ice microphysical properties. The data were obtained from the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS). Direct measurements of the con-densed water content and coincident Doppler radar measurements were acquired, facilitating improved estimates of ice particle mass, a variable that is an underlying factor for calculating and therefore retrieving the radar reflectivity Ze, median mass diameter Dm, particle terminal velocity, and snowfall rate S. The relationship between the measured ice water content (IWC) and that calculated from the particle size distributions (PSDs) using relationships developed in earlier studies, and between the calculated and measured radar reflectivity at the four radar wavelengths, are quantified. Relationships are derived between the measured IWC and properties of the PSD, Dm, Ze at the four radar wavelengths, and the dual-wavelength ratio. Because IWC and Ze are measured directly, the coefficients in the mass-dimensional relationship that best match both the IWC and Ze are derived. The relationships developed here, and the mass-dimensional relationship that uses both the measured IWC and Ze to find a best match for both variables, can be used in studies that characterize the properties of wintertime snow clouds.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2023 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Heymsfield, Andrew
Bansemer, Aaron
Heymsfield, Gerald
Noone, David
Grecu, Mircea
Toohey, Darin
Publisher UCAR/NCAR - Library
Publication Date 2023-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:42:47.643913
Metadata Record Identifier edu.ucar.opensky::articles:26184
Metadata Language eng; USA
Suggested Citation Heymsfield, Andrew, Bansemer, Aaron, Heymsfield, Gerald, Noone, David, Grecu, Mircea, Toohey, Darin. (2023). Relationship of multiwavelength radar measurements to ice microphysics from the IMPACTS field program. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7jm2fk2. Accessed 05 April 2025.

Harvest Source