Identification

Title

Relationship of multiwavelength radar measurements to ice microphysics from the IMPACTS field program

Abstract

Coincident radar data with Doppler radar measurements at X, Ku, Ka, and W bands on the NASA ER-2 aircraft overflying the NASA P-3 aircraft acquiring in situ microphysical measurements are used to characterize the rela-tionship between radar measurements and ice microphysical properties. The data were obtained from the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS). Direct measurements of the con-densed water content and coincident Doppler radar measurements were acquired, facilitating improved estimates of ice particle mass, a variable that is an underlying factor for calculating and therefore retrieving the radar reflectivity Ze, median mass diameter Dm, particle terminal velocity, and snowfall rate S. The relationship between the measured ice water content (IWC) and that calculated from the particle size distributions (PSDs) using relationships developed in earlier studies, and between the calculated and measured radar reflectivity at the four radar wavelengths, are quantified. Relationships are derived between the measured IWC and properties of the PSD, Dm, Ze at the four radar wavelengths, and the dual-wavelength ratio. Because IWC and Ze are measured directly, the coefficients in the mass-dimensional relationship that best match both the IWC and Ze are derived. The relationships developed here, and the mass-dimensional relationship that uses both the measured IWC and Ze to find a best match for both variables, can be used in studies that characterize the properties of wintertime snow clouds.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7jm2fk2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:42:47.643913

Metadata language

eng; USA