Potential for ground-based glaciogenic cloud seeding over mountains in the interior Western United States and anticipated changes in a warmer climate

Glaciogenic cloud seeding has long been practiced as a way to increase water availability in arid regions, such as the interior western United States. Many seeding programs in this region target cold-season orographic clouds with ground-based silver iodide generators. Here, the “seedability” (defined as the fraction of time that conditions are suitable for ground-based seeding) is evaluated in this region from 10 years of hourly output from a regional climate model with a horizontal resolution of 4 km. Seedability criteria are based on temperature, presence of supercooled liquid water, and Froude number, which is computed here as a continuous field relative to the local terrain. The model’s supercooled liquid water compares reasonably well to microwave radiometer observations. Seedability peaks at 20%-30% for many mountain ranges in the cold season, with the best locations just upwind of crests, over the highest terrain in Colorado and Wyoming, as well as over ranges in the northwest interior. Mountains farther south are less frequently seedable, because of warmer conditions, but when they are, cloud supercooled liquid water content tends to be relatively high. This analysis is extended into a future climate, anticipated for later this century, with a mean temperature 2.0 K warmer than the historical climate. Seedability generally will be lower in this future warmer climate, especially in the most seedable areas, but, when seedable, clouds tend to contain slightly more supercooled liquid water.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2021 American Meteorological Society (AMS).


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mazzetti, Thomas O.
Geerts, Bart
Xue, Lulin
Tessendorf, Sarah
Weeks, Courtney
Wang, Yonggang
Publisher UCAR/NCAR - Library
Publication Date 2021-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:33:45.643810
Metadata Record Identifier edu.ucar.opensky::articles:25041
Metadata Language eng; USA
Suggested Citation Mazzetti, Thomas O., Geerts, Bart, Xue, Lulin, Tessendorf, Sarah, Weeks, Courtney, Wang, Yonggang. (2021). Potential for ground-based glaciogenic cloud seeding over mountains in the interior Western United States and anticipated changes in a warmer climate. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7vd730x. Accessed 25 November 2024.

Harvest Source