Potential for ground-based glaciogenic cloud seeding over mountains in the interior Western United States and anticipated changes in a warmer climate
Glaciogenic cloud seeding has long been practiced as a way to increase water availability in arid regions, such as the interior western United States. Many seeding programs in this region target cold-season orographic clouds with ground-based silver iodide generators. Here, the “seedability” (defined as the fraction of time that conditions are suitable for ground-based seeding) is evaluated in this region from 10 years of hourly output from a regional climate model with a horizontal resolution of 4 km. Seedability criteria are based on temperature, presence of supercooled liquid water, and Froude number, which is computed here as a continuous field relative to the local terrain. The model’s supercooled liquid water compares reasonably well to microwave radiometer observations. Seedability peaks at 20%-30% for many mountain ranges in the cold season, with the best locations just upwind of crests, over the highest terrain in Colorado and Wyoming, as well as over ranges in the northwest interior. Mountains farther south are less frequently seedable, because of warmer conditions, but when they are, cloud supercooled liquid water content tends to be relatively high. This analysis is extended into a future climate, anticipated for later this century, with a mean temperature 2.0 K warmer than the historical climate. Seedability generally will be lower in this future warmer climate, especially in the most seedable areas, but, when seedable, clouds tend to contain slightly more supercooled liquid water.
document
http://n2t.net/ark:/85065/d7vd730x
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-09-01T00:00:00Z
Copyright 2021 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:33:45.643810