Evaluation of WRF model output for severe-weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment

This study assesses forecasts of the preconvective and near-storm environments from the convection-allowing models run for the 2008 National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) spring experiment. Evaluating the performance of convection-allowing models (CAMs) is important for encouraging their appropriate use and development for both research and operations. Systematic errors in the CAM forecasts included a cold bias in mean 2-m and 850-hPa temperatures over most of the United States and smaller than observed vertical wind shear and 850-hPa moisture over the high plains. The placement of airmass boundaries was similar in forecasts from the CAMs and the operational North American Mesoscale (NAM) model that provided the initial and boundary conditions. This correspondence contributed to similar characteristics for spatial and temporal mean error patterns. However, substantial errors were found in the CAM forecasts away from airmass boundaries. The result is that the deterministic CAMs do not predict the environment as well as the NAM. It is suggested that parameterized processes used at convection-allowing grid lengths, particularly in the boundary layer, may be contributing to these errors. It is also shown that mean forecasts from an ensemble of CAMs were substantially more accurate than forecasts from deterministic CAMs. If the improvement seen in the CAM forecasts when going from a deterministic framework to an ensemble framework is comparable to improvements in mesoscale model forecasts when going from a deterministic to an ensemble framework, then an ensemble of mesoscale model forecasts could predict the environment even better than an ensemble of CAMs. Therefore, it is suggested that the combination of mesoscale (convection parameterizing) and CAM configurations is an appropriate avenue to explore for optimizing the use of limited computer resources for severe weather forecasting applications.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Coniglio, Michael
Elmore, Kimberly
Kain, John
Weiss, Steven
Xue, Ming
Weisman, Morris
Publisher UCAR/NCAR - Library
Publication Date 2010-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:26:31.613589
Metadata Record Identifier edu.ucar.opensky::articles:10575
Metadata Language eng; USA
Suggested Citation Coniglio, Michael, Elmore, Kimberly, Kain, John, Weiss, Steven, Xue, Ming, Weisman, Morris. (2010). Evaluation of WRF model output for severe-weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7n29xf4. Accessed 31 January 2025.

Harvest Source