Comparison of drift velocities of nighttime equatorial plasma depletions with ambient plasma drifts and thermospheric neutral winds

This is the first study to compare plasma depletion drifts with the ambient plasma drifts and neutral winds in the post sunset equatorial ionosphere using global-scale satellite observations. The local time and latitude variations of the drift velocities of O⁺ plasma depletions at 350-400 km altitude are derived from the observations of the far ultraviolet imager operated on the IMAGE satellite during 10 March to 7 June 2002. These depletion drift velocities are compared with the simultaneously measured ion drift velocities and neutral winds by the ROCSAT-1 and the CHAMP satellites for a similar time period. The analysis shows that the zonal drift velocity of plasma depletions is smaller than both the ambient ion zonal drift velocity and the neutral zonal wind at 18:00-20:00 magnetic local time, and after 21:00, the variations of these velocities are similar. The difference of the plasma depletion drift with the background is found to be smaller at lower latitudes. Furthermore, the zonal drift velocity of the depletion is found to have a large latitudinal gradient specifically at 12°–18° magnetic latitude, which again does not match the ambient ion drift and the neutral wind. This latitudinal difference has been reported by previous studies, but those studies use models and they only compare the depletion drifts with the modeled neutral winds. This study provides a measure of the difference that has never been studied before by any study using global observations. It has been suggested that polarization electric fields inside the plasma depletion structure drive the plasma to drift westward and thus the depletion structure moves to the east. The latitudinal gradient of the depletion drift velocity seen here in this study could also be explained by the polarization electric fields. For the C-shaped (reversed C) depletion, the polarization electric fields inside the depletion drive a westward drift of plasma and this drift velocity changes with increasing latitude. Consequently, the depletion drift has a latitudinal gradient becoming significant at higher latitudes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liu, Guiping
England, Scott
Frey, Harald
Immel, Thomas
Lin, Chin
Pacheco, Edgardo
Häusler, Kathrin
Doornbos, Eelco
Publisher UCAR/NCAR - Library
Publication Date 2013-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:11:27.725347
Metadata Record Identifier edu.ucar.opensky::articles:13213
Metadata Language eng; USA
Suggested Citation Liu, Guiping, England, Scott, Frey, Harald, Immel, Thomas, Lin, Chin, Pacheco, Edgardo, Häusler, Kathrin, Doornbos, Eelco. (2013). Comparison of drift velocities of nighttime equatorial plasma depletions with ambient plasma drifts and thermospheric neutral winds. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7h41sc0. Accessed 22 February 2025.

Harvest Source