Identification

Title

Comparison of drift velocities of nighttime equatorial plasma depletions with ambient plasma drifts and thermospheric neutral winds

Abstract

This is the first study to compare plasma depletion drifts with the ambient plasma drifts and neutral winds in the post sunset equatorial ionosphere using global-scale satellite observations. The local time and latitude variations of the drift velocities of O⁺ plasma depletions at 350-400 km altitude are derived from the observations of the far ultraviolet imager operated on the IMAGE satellite during 10 March to 7 June 2002. These depletion drift velocities are compared with the simultaneously measured ion drift velocities and neutral winds by the ROCSAT-1 and the CHAMP satellites for a similar time period. The analysis shows that the zonal drift velocity of plasma depletions is smaller than both the ambient ion zonal drift velocity and the neutral zonal wind at 18:00-20:00 magnetic local time, and after 21:00, the variations of these velocities are similar. The difference of the plasma depletion drift with the background is found to be smaller at lower latitudes. Furthermore, the zonal drift velocity of the depletion is found to have a large latitudinal gradient specifically at 12°–18° magnetic latitude, which again does not match the ambient ion drift and the neutral wind. This latitudinal difference has been reported by previous studies, but those studies use models and they only compare the depletion drifts with the modeled neutral winds. This study provides a measure of the difference that has never been studied before by any study using global observations. It has been suggested that polarization electric fields inside the plasma depletion structure drive the plasma to drift westward and thus the depletion structure moves to the east. The latitudinal gradient of the depletion drift velocity seen here in this study could also be explained by the polarization electric fields. For the C-shaped (reversed C) depletion, the polarization electric fields inside the depletion drive a westward drift of plasma and this drift velocity changes with increasing latitude. Consequently, the depletion drift has a latitudinal gradient becoming significant at higher latitudes.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7h41sc0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:11:27.725347

Metadata language

eng; USA