Underestimation of the impact of land cover change on the biophysical environment of the Arctic and boreal region of North America

The Arctic and Boreal Region (ABR) is subject to extensive land cover change (LCC) due to elements such as wildfire, permafrost thaw, and shrubification. The natural and anthropogenic ecosystem transitions (i.e. LCC) alter key ecosystem characteristics including land surface temperature (LST), albedo, and evapotranspiration (ET). These biophysical variables are important in controlling surface energy balance, water exchange, and carbon uptake which are important factors influencing the warming trend over the ABR. However, to what extent these variables are sensitive to various LCC in heterogeneous systems such as ABR is still an open question. In this study, we use a novel data-driven approach based on high-resolution land cover data (2003 and 2013) over four million km(2) to estimate the impact of multiple types of ecosystem transitions on LST, albedo, and ET. We also disentangle the contribution of LCC vs. natural variability of the system in changes in biophysical variables. Our results indicate that from 2003 to 2013 about 46% (similar to 2 million km(2)) of the region experienced LCC, which drove measurable changes to the biophysical environment across ABR over the study period. In almost half of the cases, LCC imposes a change in biophysical variables against the natural variability of the system. For example, in similar to 35% of cases, natural variability led to -1.4 +/- 0.9 K annual LST reduction, while LCC resulted in a 0.9 +/- 0.6 K LST increase, which dampened the decrease in LST due to natural variability. In some cases, the impact of LCC was strong enough to reverse the sign of the overall change. Our results further demonstrate the contrasting sensitivity of biophysical variables to specific LCC. For instance, conversion of sparsely vegetated land to a shrub (i.e. shrubification) significantly decreased annual LST (-2.2 +/- 0.1 K); whereas sparsely vegetated land to bare ground increased annual LST (1.6 +/- 0.06 K). We additionally highlight the interplay between albedo and ET in driving changes in annual and seasonal LST. Whether our findings are generalizable to the spatial and temporal domain outside of our data used here is unknown, but merits future research due to the importance of the interactions between LCC and biophysical variables.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Dashti, Hamid
Smith, William K
Huo, Xueli
Fox, Andrew M
Javadian, Mostafa
Devine, Charles J
Behrangi, Ali
Moore, David J P
Publisher UCAR/NCAR - Library
Publication Date 2023-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:40:58.203208
Metadata Record Identifier edu.ucar.opensky::articles:26005
Metadata Language eng; USA
Suggested Citation Dashti, Hamid, Smith, William K, Huo, Xueli, Fox, Andrew M, Javadian, Mostafa, Devine, Charles J, Behrangi, Ali, Moore, David J P. (2023). Underestimation of the impact of land cover change on the biophysical environment of the Arctic and boreal region of North America. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d72f7s9f. Accessed 31 January 2025.

Harvest Source