The role of large-scale feedbacks in cumulus convection parameter estimation

Uncertainty in cumulus convection parameterization is one of the most important causes of model climate drift through interactions between large-scale background and local convection that use empirically set parameters. Without addressing the large-scale feedback, the calibrated parameter values within a convection scheme are usually not optimal for a climate model. This study first designs a multiple-column atmospheric model that includes large-scale feedbacks for cumulus convection and then explores the role of large-scale feedbacks in cumulus convection parameter estimation using an ensemble filter. The performance of convection parameter estimation with or without the presence of large-scale feedback is examined. It is found that including large-scale feedbacks in cumulus convection parameter estimation can significantly improve the estimation quality. This is because large-scale feedbacks help transform local convection uncertainties into global climate sensitivities, and including these feedbacks enhances the statistical representation of the relationship between parameters and state variables. The results of this study provide insights for further understanding of climate drift induced from imperfect cumulus convection parameterization, which may help improve climate modeling.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Li, Shan
Zhang, Shaoqing
Liu, Zhengyu
Yang, Xiaosong
Rosati, Anthony
Golaz, Jean-Christophe
Zhao, Ming
Publisher UCAR/NCAR - Library
Publication Date 2016-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:01:37.234674
Metadata Record Identifier edu.ucar.opensky::articles:18459
Metadata Language eng; USA
Suggested Citation Li, Shan, Zhang, Shaoqing, Liu, Zhengyu, Yang, Xiaosong, Rosati, Anthony, Golaz, Jean-Christophe, Zhao, Ming. (2016). The role of large-scale feedbacks in cumulus convection parameter estimation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7qj7jw3. Accessed 04 April 2025.

Harvest Source