The mesoscale kinetic energy spectrum of a baroclinic life cycle

The atmospheric mesoscale kinetic energy spectrum is investigated through numerical simulations of an idealized baroclinic wave life cycle, from linear instability to mature nonlinear evolution and with high horizontal and vertical resolution (∆x ≈ 10 km and ∆z ≈ 60 m). The spontaneous excitation of inertia–gravity waves yields a shallowing of the mesoscale spectrum with respect to the large scales, in qualitative agreement with observations. However, this shallowing is restricted to the lower stratosphere and does not occur in the upper troposphere. At both levels, the mesoscale divergent kinetic energy spectrum--a proxy for the inertia-gravity wave energy spectrum-resembles a -5/3 power law in the mature stage. Divergent kinetic energy dominates the lower stratospheric mesoscale spectrum, accounting for its shallowing. Rotational kinetic energy, by contrast, dominates the upper tropospheric spectrum and no shallowing of the full spectrum is observed. By analyzing the tendency equation for the kinetic energy spectrum, it is shown that the lower stratospheric spectrum is not governed solely by a downscale energy cascade; rather, it is influenced by the vertical pressure flux divergence associated with vertically propagating inertia-gravity waves.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Waite, Michael
Snyder, Chris
Publisher UCAR/NCAR - Library
Publication Date 2009-04-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:56:16.828984
Metadata Record Identifier edu.ucar.opensky::articles:15330
Metadata Language eng; USA
Suggested Citation Waite, Michael, Snyder, Chris. (2009). The mesoscale kinetic energy spectrum of a baroclinic life cycle. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7rv0ppt. Accessed 30 January 2025.

Harvest Source