The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model

The major evolution of the National Center for Atmospheric Research Community Atmosphere Model (CAM) is used to diagnose climate feedbacks, understand how climate feedbacks change with different physical parameterizations, and identify the processes and regions that determine climate sensitivity. In the evolution of CAM from version 4 to version 5, the water vapor, temperature, surface albedo, and lapse rate feedbacks are remarkably stable across changes to the physical parameterization suite. However, the climate sensitivity increases from 3.2 K in CAM4 to 4.0 K in CAM5. The difference is mostly due to (i) more positive cloud feedbacks and (ii) higher CO₂ radiative forcing in CAM5. The intermodel differences in cloud feedbacks are largest in the tropical trade cumulus regime and in the midlatitude storm tracks. The subtropical stratocumulus regions do not contribute strongly to climate feedbacks owing to their small area coverage. A "modified Cess" configuration for atmosphere-only model experiments is shown to reproduce slab ocean model results. Several parameterizations contribute to changes in tropical cloud feedbacks between CAM4 and CAM5, but the new shallow convection scheme causes the largest midlatitude feedback differences and the largest change in climate sensitivity. Simulations with greater cloud forcing in the mean state have lower climate sensitivity. This work provides a methodology for further analysis of climate sensitivity across models and a framework for targeted comparisons with observations that can help constrain climate sensitivity to radiative forcing.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2012 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Gettelman, A.
Kay, Jennifer
Shell, K.
Publisher UCAR/NCAR - Library
Publication Date 2012-03-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:46:46.535079
Metadata Record Identifier edu.ucar.opensky::articles:11925
Metadata Language eng; USA
Suggested Citation Gettelman, A., Kay, Jennifer, Shell, K.. (2012). The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d76h4j3n. Accessed 22 February 2025.

Harvest Source