Testing and comparing the modified anomalous diffraction approximation

The modified anomalous diffraction approximation (MADA) is used to predict absorption and extinction in water and ice clouds, but it does not predict the scattering phase function or asymmetry parameter g. In conjunction with g parameterizations, it has been used in satellite remote sensing and to treat the radiative properties of ice clouds in global climate models. However, it has undergone only limited testing. This study 1) compares extinction efficiencies (Qext) predicted by MADA for a laboratory grown ice cloud against corresponding Qext measurements over the wavelength range 2-14 μm; 2) tests absorption efficiencies (Qabs) and Qext predicted by MADA against those predicted by T-matrix theory and the finite difference time domain (FDTD) method; and 3) compares MADA with three popular schemes used for predicting the radiative properties of cirrus clouds. In addition, the photon tunneling process may contribute up to 45% of the absorption in water clouds at some terrestrial wavelengths, but its role in ice clouds is uncertain since it depends on particle shape. For the first time, the efficiency of photon tunneling was parameterized in terms of ice particle shape. Finally, an alternate formulation of MADA that offers some physical insights is presented. MADA errors relative to the Qext measurements were 3.0% on average, while mean MADA errors relative to Qabs from T-matrix, over the wavelength range 2-18 μm (size parameter range 2-22), were 5.9%. The mean error for the single scattering albedo relative to T-matrix calculations was 2.5%. MADA absorption errors relative to FDTD over the wavelength range 3-100 μm were no greater than 15% for six ice particle shapes. Finally, the absorption coefficients predicted by MADA and two other popular parameterizations generally agreed within 5%.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2006 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Mitchell, David
Baran, Anthony
Arnott, W.
Schmitt, Carl
Publisher UCAR/NCAR - Library
Publication Date 2006-11-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:38:05.023726
Metadata Record Identifier edu.ucar.opensky::articles:7069
Metadata Language eng; USA
Suggested Citation Mitchell, David, Baran, Anthony, Arnott, W., Schmitt, Carl. (2006). Testing and comparing the modified anomalous diffraction approximation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d71c1x51. Accessed 31 January 2025.

Harvest Source