Quantification of the Arctic sea ice‐driven atmospheric circulation variability in coordinated large ensemble simulations

A coordinated set of large ensemble atmosphere-only simulations is used to investigate the impacts of observed Arctic sea ice-driven variability (SIDV) on the atmospheric circulation during 1979-2014. The experimental protocol permits separating Arctic SIDV from internal variability and variability driven by other forcings including sea surface temperature and greenhouse gases. The geographic pattern of SIDV is consistent across seven participating models, but its magnitude strongly depends on ensemble size. Based on 130 members, winter SIDV is similar to 0.18 hPa(2) for Arctic-averaged sea level pressure (similar to 1.5% of the total variance), and similar to 0.35 K-2 for surface air temperature (similar to 21%) at interannual and longer timescales. The results suggest that more than 100 (40) members are needed to separate Arctic SIDV from other components for dynamical (thermodynamical) variables, and insufficient ensemble size always leads to overestimation of SIDV. Nevertheless, SIDV is 0.75-1.5 times as large as the variability driven by other forcings over northern Eurasia and Arctic.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Liang, Yu‐Chiao
Kwon, Young‐Oh
Frankignoul, Claude
Danabasoglu, Gokhan
Yeager, Stephen
Cherchi, Annalisa
Gao, Yongqi
Gastineau, Guillaume
Ghosh, Rohit
Matei, Daniela
Mecking, Jennifer V.
Peano, Daniele
Suo, Lingling
Tian, Tian
Publisher UCAR/NCAR - Library
Publication Date 2020-01-16T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:08:14.631248
Metadata Record Identifier edu.ucar.opensky::articles:23158
Metadata Language eng; USA
Suggested Citation Liang, Yu‐Chiao, Kwon, Young‐Oh, Frankignoul, Claude, Danabasoglu, Gokhan, Yeager, Stephen, Cherchi, Annalisa, Gao, Yongqi, Gastineau, Guillaume, Ghosh, Rohit, Matei, Daniela, Mecking, Jennifer V., Peano, Daniele, Suo, Lingling, Tian, Tian. (2020). Quantification of the Arctic sea ice‐driven atmospheric circulation variability in coordinated large ensemble simulations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7mw2mbc. Accessed 05 March 2025.

Harvest Source