Prediction of a flash flood in complex terrain. Part I: A comparison of rainfall estimates from radar, and very short range rainfall simulations from a dynamic model and an automated algorithmic system

Operational prediction of flash floods caused by convective rainfall in mountainous areas requires accurate estimates or predictions of the rainfall distribution in space and time. The details of the spatial distribution are especially critical in complex terrain because the watersheds generally are small in size, and position errors in the placement of the rainfall can distribute the rain over the wrong watershed. In addition to the need for good rainfall estimates, accurate flood prediction requires a surface-hydrologic model that is capable of predicting stream or river discharge based on the rainfall-rate input data. In part 1 of this study, different techniques for the estimation and prediction of convective rainfall are applied to the Buffalo Creek, Colorado, flash flood of July 1996, during which over 75 mm of rain from a thunderstorm fell on the watershed in less than 1 h. The hydrologic impact of the rainfall was exacerbated by the fact that a considerable fraction of the watershed experienced a wildfire approximately two months prior to the rain event. Precipitation estimates from the National Weather Service Weather Surveillance Radar-1988 Doppler and the National Center for Atmospheric Research S-band, dual-polarization radar, collocated east of Denver, Colorado, were compared. Very short range simulations from a convection-resolving dynamic model that was initialized variationally using the radar reflectivity and Doppler winds were compared with simulations from an automated algorithmic forecast system that also employs the radar data. The radar estimates of rain rate and the two forecasting systems that employ the radar data have degraded accuracy by virtue of the fact that they are applied in complex terrain. Nevertheless, the dynamic model and automated algorithms both produce simulations that could be useful operationally for input to surface-hydrologic models employed for flood warning. Part 2 of this study, reported in a companion paper, describes experiments in which these radar-based precipitation estimates and dynamic model–and automated algorithm–based precipitation simulations are used as input to a surface-hydrologic model for simulation of the stream discharge associated with the flood.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2000 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Warner, Thomas
Brandes, Edward
Sun, Juanzhen
Yates, David
Mueller, Cynthia
Publisher UCAR/NCAR - Library
Publication Date 2000-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:42:12.884314
Metadata Record Identifier edu.ucar.opensky::articles:6149
Metadata Language eng; USA
Suggested Citation Warner, Thomas, Brandes, Edward, Sun, Juanzhen, Yates, David, Mueller, Cynthia. (2000). Prediction of a flash flood in complex terrain. Part I: A comparison of rainfall estimates from radar, and very short range rainfall simulations from a dynamic model and an automated algorithmic system. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7w959cv. Accessed 07 February 2025.

Harvest Source