Modification of near-wall coherent structures by inertial particles

Direct numerical simulations are combined with two-way coupled Lagrangian point particles to study the effect of Reynolds number on particle-turbulence interaction. Turbulent planar Couette flow is simulated at a constant dispersed phase mass loading of ϕ m = 0.25 for particle Stokes numbers of St K = [O(1), O(10), O(100)] (based on the Stokes time scale of the particle and the Kolmogorov time scale of the flow) and bulk Reynolds numbers of Re b = [8100, 24000, 72000] (based on the plate velocity difference and separation distance). Statistics of swirling strength |λ ci | are used to evaluate the impact of particles on near-wall motions which are responsible for turbulent, wall-normal momentum transport. Instantaneously, the number of high-strength swirling motions near the wall decreases significantly in the presence of particles, and this trend is enhanced with increasing Re b . Conditional averages are computed using linear stochastic estimation, providing the average structures responsible for ejection events near the wall. These conditional eddies are weakened substantially by the presence of the dispersed phase, and this effect is again enhanced with increasing Re b . We propose a mechanism where particles, by interfering with the hairpin regeneration process near the wall, can influence turbulent fluxes in a way that increases with Re b despite only having direct interaction with scales on the same order as their small physical size. At the same time, turbulent momentum flux concentrated at higher wavenumbers with increasing Re b allows small particles to be effective agents for altering turbulent transport.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Richter, David
Sullivan, Peter
Publisher UCAR/NCAR - Library
Publication Date 2014-10-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:44:23.594675
Metadata Record Identifier edu.ucar.opensky::articles:14473
Metadata Language eng; USA
Suggested Citation Richter, David, Sullivan, Peter. (2014). Modification of near-wall coherent structures by inertial particles. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70r9qd6. Accessed 31 January 2025.

Harvest Source