Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations

We present results from Lyon-Fedder-Mobarry (LFM) global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere interaction. We use these simulations to investigate the role that solar wind dynamic pressure fluctuations play in the generation of magnetospheric ultra-low frequency (ULF) pulsations. The simulations presented in this study are driven with idealized solar wind input conditions. In four of the simulations, we introduce monochromatic ULF fluctuations in the upstream solar wind dynamic pressure. In the fifth simulation, we introduce a continuum of ULF frequencies in the upstream solar wind dynamic pressure fluctuations. In this numerical experiment, the idealized nature of the solar wind driving conditions allows us to study the magnetospheric response to only a fluctuating upstream dynamic pressure, while holding all other solar wind driving parameters constant. The simulation results suggest that ULF fluctuations in the solar wind dynamic pressure can drive magnetospheric ULF pulsations in the electric and magnetic fields on the dayside. Moreover, the simulation results suggest that when the driving frequency of the solar wind dynamic pressure fluctuations matches one of the natural frequencies of the magnetosphere, magnetospheric cavity modes can be energized. Citation: Claudepierre, S. G., M. Wiltberger, S. R. Elkington, W. Lotko, and M. K. Hudson (2009), Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations, Geophys. Res. Lett., 36, L13101, doi:10.1029/2009GL039045.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2009 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Claudepierre, S. G.
Wiltberger, M.
Elkington, S. R.
Lotko, W.
Hudson, M. K.
Publisher UCAR/NCAR - Library
Publication Date 2009-07-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:12:04.410075
Metadata Record Identifier edu.ucar.opensky::articles:19359
Metadata Language eng; USA
Suggested Citation Claudepierre, S. G., Wiltberger, M., Elkington, S. R., Lotko, W., Hudson, M. K.. (2009). Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7sn0brt. Accessed 04 December 2024.

Harvest Source