Magnetic cycles in global large-eddy simulations of solar convection

We report on a global magnetohydrodynamical simulation of the solar convection zone, which succeeds in generating a large-scale axisymmetric magnetic component, antisymmetric about the equatorial plane and undergoing regular polarity reversals on decadal timescales. We focus on a specific simulation run covering 255 years, during which 8 polarity reversals are observed, with a mean period of 30 years. Time–latitude slices of the zonally averaged toroidal magnetic component at the base of the convecting envelope show a well-organized toroidal flux system building up in each solar hemisphere, peaking at mid-latitudes and migrating toward the equator in the course of each cycle, in remarkable agreement with inferences based on the sunspot butterfly diagram. The simulation also produces a large-scale dipole moment, varying in phase with the internal toroidal component, suggesting that the simulation may be operating as what is known in mean-field theory as an αΩ dynamo.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

An edited version of this article was published by the Institute of Physics on behalf of the American Astronomical Society. Copyright 2010 the American Astronomical Society.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Ghizaru, Mihai
Charbonneau, Paul
Smolarkiewicz, Piotr
Publisher UCAR/NCAR - Library
Publication Date 2010-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:05:59.721596
Metadata Record Identifier edu.ucar.opensky::articles:18105
Metadata Language eng; USA
Suggested Citation Ghizaru, Mihai, Charbonneau, Paul, Smolarkiewicz, Piotr. (2010). Magnetic cycles in global large-eddy simulations of solar convection. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7xd137d. Accessed 05 April 2025.

Harvest Source