Investigation of liquid cloud microphysical properties of deep convective systems: 1. Parameterization raindrop size distribution and its application for stratiform rain estimation

To investigate liquid-phase (T>3 degrees C) cloud and precipitation microphysical properties within Deep Convective Systems (DCSs), eight DCS cases sampled by the University of North Dakota Citation II research aircraft during Midlatitude Continental Convective Clouds Experiment were selected. A full spectrum of raindrop size distribution (DSD) was constructed from 120 mu m to 4000 mu m through a combination of two-dimensional cloud probe (120 to 900 mu m) and High Volume Precipitation Spectrometer (900 to 4000 mu m) data sets. A total of 1126 five second DSDs have been used to fit to Gamma and Exponential functions within the stratiform rain (SR) regions of DCSs. The Gamma shape and slope parameters are then compared with those derived from surface disdrometer measurements. The similar - relationships but different and value ranges from two independent platforms at different elevations may represent the real nature of DSD shape information in clouds and at the surface. To apply the exponentially fitted DSD parameters to precipitation estimation using Next Generation Weather Radar (NEXRAD) radar reflectivity factor Z(e), the terms N-0E and (E) have been parameterized as a function of Z(e) using an empirical N-0E-(E) relationship. The averaged SR rain rate retrieved from this study is almost identical to the surface measurements, while the NEXRAD Q2 precipitation is twice as large. The comparisons indicate that the new DSD parameterization scheme is robust, while the Q2 SR precipitation estimation based on Marshall-Palmer Z-R relationship, where a constant DSD intercept parameter (N-0E) was assumed, needs to be improved for heavy precipitation cases.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wang, Jingyu
Dong, Xiquan
Xi, Baike
Heymsfield, Andrew J.
Publisher UCAR/NCAR - Library
Publication Date 2016-09-27T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:02:16.964988
Metadata Record Identifier edu.ucar.opensky::articles:18950
Metadata Language eng; USA
Suggested Citation Wang, Jingyu, Dong, Xiquan, Xi, Baike, Heymsfield, Andrew J.. (2016). Investigation of liquid cloud microphysical properties of deep convective systems: 1. Parameterization raindrop size distribution and its application for stratiform rain estimation. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7q241xc. Accessed 31 January 2025.

Harvest Source