Global soil carbon projections are improved by modelling microbial processes

Society relies on Earth system models (ESMs) to project future climate and carbon (C) cycle feedbacks. However, the soil C response to climate change is highly uncertain in these models ¹,,² and they omit key biogeochemical mechanisms ³,⁴,⁵. Specifically, the traditional approach in ESMs lacks direct microbial control over soil C dynamics ⁶,⁷,⁸. Thus, we tested a new model that explicitly represents microbial mechanisms of soil C cycling on the global scale. Compared with traditional models, the microbial model simulates soil C pools that more closely match contemporary observations. It also projects a much wider range of soil C responses to climate change over the twenty-first century. Global soils accumulate C if microbial growth efficiency declines with warming in the microbial model. If growth efficiency adapts to warming, the microbial model projects large soil C losses. By comparison, traditional models project modest soil C losses with global warming. Microbes also change the soil response to increased C inputs, as might occur with CO₂ or nutrient fertilization. In the microbial model, microbes consume these additional inputs; whereas in traditional models, additional inputs lead to C storage. Our results indicate that ESMs should simulate microbial physiology to more accurately project climate change feedbacks.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 Nature Publishing Group


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wieder, William
Bonan, Gordon
Allison, Steven
Publisher UCAR/NCAR - Library
Publication Date 2013-10-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:54:35.815500
Metadata Record Identifier edu.ucar.opensky::articles:13017
Metadata Language eng; USA
Suggested Citation Wieder, William, Bonan, Gordon, Allison, Steven. (2013). Global soil carbon projections are improved by modelling microbial processes. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7th8nmq. Accessed 04 April 2025.

Harvest Source