Formation and topology of foreshock bubbles

We use global and local hybrid (kinetic ions and fluid electrons) simulations to investigate the conditions under which foreshock bubbles (FBs) form and how their topology changes with solar wind conditions. FBs form as a result of the interaction between solar wind discontinuities and backstreaming ion beams in the foreshock. They consist of an outer shock and its associated sheath plasma and a low density high temperature core with low magnetic field strength. The structure of FBs is determined by the angle between the interplanetary magnetic field and the normal to the solar wind discontinuity. We show that interaction of rotational discontinuities with the foreshock during small angles between the interplanetary magnetic field and discontinuity normal results in the formation of a nearly spherical bubble with a radius that scales with the width of the foreshock. As this angle increases, FBs become more elongated and eventually become nearly planar structures with dimensions that scale with the length of the foreshock. Despite this transformation, the signatures of FBs in spacecraft time series data remain the same in agreement with the observations. Global simulation results show that FBs form when the solar wind flow speed corresponds to high or intermediate Alfven Mach numbers (approximately >7 M-A). In general, this is tied to the relative speed between the solar wind and ion beams and drop in density of the backstreaming ions.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2020 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Omidi, N.
Lee, S. H.
Sibeck, D. G.
Turner, D. L.
Liu, Terry Z.
Angelopoulos, V.
Publisher UCAR/NCAR - Library
Publication Date 2020-09-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:07:42.645018
Metadata Record Identifier edu.ucar.opensky::articles:23971
Metadata Language eng; USA
Suggested Citation Omidi, N., Lee, S. H., Sibeck, D. G., Turner, D. L., Liu, Terry Z., Angelopoulos, V.. (2020). Formation and topology of foreshock bubbles. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7g16450. Accessed 05 March 2025.

Harvest Source