Facilitating strongly coupled ocean-atmosphere data assimilation with an interface solver

In a strongly coupled data assimilation (DA), a cross-fluid covariance is specified that allows measurements from a coupled fluid (e.g., atmosphere) to directly impact analysis increments in a target fluid (e.g., ocean). The exhaustive solution to this coupled DA problem calls for a covariance where all available measurements can influence all grid points in all fluids. Solution of such a large algebraic problem is computationally expensive, often calls for a substantial rewrite of existing fluid-specific DA systems, and, as shown in this paper, can be avoided. The proposed interface solver assumes that covariances between coupled measurements and target fluid are often close to null (e.g., between stratospheric observations and the deep ocean within a 6-h forecast cycle). In the interface solver, two separate DA solvers are run in parallel: one that produces an analysis solution in the atmosphere, and one in the ocean. Each system uses a coupled observation vector where in addition to resident measurements in the target fluid it also includes nonresident measurements in the coupled fluid that are likely to have significant influence on the analysis in the target fluid (interface measurements). An ensemble-based method is employed and a localization function for coupled ensembles is proposed. Using a coupled model for the Mediterranean Sea (in a twin setting), it is demonstrated that (i) the solution of the interface solver converges to the exhaustive solution and (ii) that in presence of poorly known error covariances, the interface solver can be configured to produce a more accurate solution than an exhaustive solver.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Frolov, Sergey
Bishop, Craig
Holt, Teddy
Cummings, James
Kuhl, David
Publisher UCAR/NCAR - Library
Publication Date 2016-01-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:07:55.096300
Metadata Record Identifier edu.ucar.opensky::articles:17910
Metadata Language eng; USA
Suggested Citation Frolov, Sergey, Bishop, Craig, Holt, Teddy, Cummings, James, Kuhl, David. (2016). Facilitating strongly coupled ocean-atmosphere data assimilation with an interface solver. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7t43vk2. Accessed 28 November 2024.

Harvest Source