Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging'' (REA) method

The "reliability ensemble averaging" (REA) method for calculating average, uncertainty range, and a measure of reliability of simulated climate changes at the subcontinental scale from ensembles of different atmosphere-ocean general circulation model (AOGCM) simulations is introduced. The method takes into account two "reliability criteria": the performance of the model in reproducing present-day climate ("model performance" criterion) and the convergence of the simulated changes across models ("model convergence" criterion). The REA method is applied to mean seasonal temperature and precipitation changes for the late decades of the twenty-first century, over 22 land regions of the world, as simulated by a recent set of nine AOGCM experiments for two anthropogenic emission scenarios (the A2 and B2 scenarios of the Intergovernmental Panel for Climate Change). In the A2 scenario the REA average regional temperature changes vary between about 2 and 7 K across regions and they are all outside the estimated natural variability. The uncertainty range around the REA average change as measured by ± the REA root-mean-square difference (rmsd) varies between 1 and 4 K across regions and the reliability is mostly between 0.2 and 0.8 (on a scale from 0 to 1). For precipitation, about half of the regional REA average changes, both positive and negative, are outside the estimated natural variability and they vary between about -25% and +30% (in units of percent of present-day precipitation). The uncertainty range around these changes (± rmsd) varies mostly between about 10% and 30% and the corresponding reliability varies widely across regions. The simulated changes for the B2 scenario show a high level of coherency with those for the A2 scenario. Compared to simpler approaches, the REA method allows a reduction of the uncertainty range in the simulated changes by minimizing the influence of "outlier" or poorly performing models. The method also produces a quantitative measure of reliability that shows that both criteria need to be met by the simulations in order to increase the overall reliability of the simulated changes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2002 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Giorgi, Filippo
Mearns, Linda
Publisher UCAR/NCAR - Library
Publication Date 2002-05-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:13:16.425171
Metadata Record Identifier edu.ucar.opensky::articles:10230
Metadata Language eng; USA
Suggested Citation Giorgi, Filippo, Mearns, Linda. (2002). Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging'' (REA) method. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d718371p. Accessed 23 February 2025.

Harvest Source