Association of solar wind proton flux extremes with pseudostreamers

We investigate the characteristics and solar origins of a subpopulation of the solar wind that possesses extreme values of proton flux. Ulysses observations including solar wind magnetic flux, proton flux, number density and velocity, and ionic composition are examined in this study. We find that the departures of solar wind proton flux from its constancy occur for time intervals leading up to and encompassing the past two solar minima, and the extreme-proton-flux wind possesses the following characteristics: (1) it generally originates from sources middle-distant from the Heliospheric Current Sheet (HCS); (2) it is associated with a broad range of velocities and electron temperatures but excludes very fast/cold wind; (3) it exhibits anticorrelation between electron temperature and proton velocity, as does the rest of the solar wind; (4) it has extreme proton density values relative to the rest of the solar wind; and (5) the extreme-high-proton-flux wind has radial component of open magnetic flux (Br) greater than the rest of the solar wind, and both extreme-high and extreme-low wind do not possess the lowest values of Br flux. Comparing with SOHO EIT 195 Å coronal images, we find the observed extreme-proton-flux wind has temporal and spatial coincidence with the appearance of low-latitude coronal holes present in the recent two solar minima; the magnetic field lines extrapolated by the Potential Field Source Surface model confirm there are coronal pseudostreamer structures involved. So we propose that these extreme-proton-flux winds can be associated with mid- to low-latitude coronal holes and "pseudostreamer" structures.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2013 American Geophysical Union.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Zhao, Liang
Gibson, Sarah
Fisk, L.
Publisher UCAR/NCAR - Library
Publication Date 2013-06-17T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:47:50.666699
Metadata Record Identifier edu.ucar.opensky::articles:12915
Metadata Language eng; USA
Suggested Citation Zhao, Liang, Gibson, Sarah, Fisk, L.. (2013). Association of solar wind proton flux extremes with pseudostreamers. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70p10xh. Accessed 02 January 2025.

Harvest Source