An efficient approach for estimating streamflow forecast skill elasticity

Seasonal streamflow prediction skill can derive from catchment initial hydrological conditions (IHCs) and from the future seasonal climate forecasts (SCFs) used to produce the hydrological forecasts. Although much effort has gone into producing state-of-the-art seasonal streamflow forecasts from improving IHCs and SCFs, these developments are expensive and time consuming and the forecasting skill is still limited inmost parts of the world. Hence, sensitivity analyses are crucial to funnel the resources into useful modeling and forecasting developments. It is in this context that a sensitivity analysis technique, the variational ensemble streamflow prediction assessment (VESPA) approach, was recently introduced. VESPA can be used to quantify the expected improvements in seasonal streamflow forecast skill as a result of realistic improvements in its predictability sources (i.e., the IHCs and the SCFs)-termed "skill elasticity''- and to indicate where efforts should be targeted. The VESPA approach is, however, computationally expensive, relying on multiple hindcasts having varying levels of skill in IHCs and SCFs. This paper presents two approximations of the approach that are computationally inexpensive alternatives. These new methods were tested against the original VESPA results using 30 years of ensemble hindcasts for 18 catchments of the contiguous United States. The results suggest that one of themethods, end point blending, is an effective alternative for estimating the forecast skill elasticities yielded by the VESPA approach. The results also highlight the importance of the choice of verification score for a goal- oriented sensitivity analysis.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Arnal, Louise
Wood, Andrew W.
Stephens, Elisabeth
Cloke, Hannah L.
Pappenberger, Florian
Publisher UCAR/NCAR - Library
Publication Date 2017-06-01T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:10:19.023502
Metadata Record Identifier edu.ucar.opensky::articles:20926
Metadata Language eng; USA
Suggested Citation Arnal, Louise, Wood, Andrew W., Stephens, Elisabeth, Cloke, Hannah L., Pappenberger, Florian. (2017). An efficient approach for estimating streamflow forecast skill elasticity. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7v98bhw. Accessed 31 January 2025.

Harvest Source