Aerosol absorption over land derived from the ultra-violet aerosol index by deep learning

Quantitative measurements of aerosol absorptive properties, e.g., the absorbing aerosol optical depth (AAOD) and the single scattering albedo (SSA), are important to reduce uncertainties of aerosol climate radiative forcing assessments. Currently, global retrievals of AAOD and SSA are mainly provided by the ground-based aerosol robotic network (AERONET), whereas it is still challenging to retrieve them from space. However, we found the AERONET AAOD has a relatively strong correlation with the satellite retrieved ultra-violet aerosol index (UVAI). Based on this, a numerical relation is built by a deep neural network (DNN) to predict global AAOD and SSA over land from the long-term UVAI record (2006-2019) provided by the ozone monitoring instrument (OMI) onboard Aura. The DNN predicted aerosol absorption is satisfying for samples with AOD at 550 nm larger than 0.1, and the DNN model performance is better for smaller absorbing aerosols (e.g., smoke) than larger ones (e.g., mineral dust). The comparison of the DNN predictions with AERONET shows a high correlation coefficient of 0.90 and a root mean square of 0.005 for the AAOD, and over 80% of samples are within the expected uncertainty of AERONET SSA (+/- 0.03).

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Sun, Jiyunting
Veefkind, Pepijn
van Velthoven, Peter
Levelt, Pieternel F.
Publisher UCAR/NCAR - Library
Publication Date 2021-08-30T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:33:25.057263
Metadata Record Identifier edu.ucar.opensky::articles:24793
Metadata Language eng; USA
Suggested Citation Sun, Jiyunting, Veefkind, Pepijn, van Velthoven, Peter, Levelt, Pieternel F.. (2021). Aerosol absorption over land derived from the ultra-violet aerosol index by deep learning. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7n01b0j. Accessed 30 January 2025.

Harvest Source