Accelerated Greenland ice sheet mass loss under high greenhouse gas forcing as simulated by the coupled CESM2.1-CISM2.1

The Greenland ice sheet (GrIS) is now losing mass at a rate of 0.7 mm of sea level rise (SLR) per year. Here we explore future GrIS evolution and interactions with global and regional climate under high greenhouse gas forcing with the Community Earth System Model version 2.1 (CESM2.1), which includes an interactive ice sheet component (the Community Ice Sheet Model v2.1 [CISM2.1]) and an advanced energy balance-based calculation of surface melt. We run an idealized 350-year scenario in which atmospheric CO2 concentration increases by 1% annually until reaching four times pre-industrial values at year 140, after which it is held fixed. The global mean temperature increases by 5.2 and 8.5 K by years 131-150 and 331-350, respectively. The projected GrIS contribution to global mean SLR is 107 mm by year 150 and 1,140 mm by year 350. The rate of SLR increases from 2 mm yr(-1) at year 150 to almost 7 mm yr(-1) by year 350. The accelerated mass loss is caused by rapidly increasing surface melt as the ablation area expands, with associated albedo feedback and increased sensible and latent heat fluxes. This acceleration occurs for a global warming of approximately 4.2 K with respect to pre-industrial and is in part explained by the quasi-parabolic shape of the ice sheet, which favors rapid expansion of the ablation area as it approaches the interior "plateau."

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Muntjewerf, Laura
Sellevold, Raymond
Vizcaino, Miren
Ernani da Silva, Carolina
Petrini, Michele
Thayer�Calder, Katherine
Scherrenberg, Meike D. W.
Bradley, Sarah L.
Katsman, Caroline A.
Fyke, Jeremy
Lipscomb, William H.
Lofverstrom, Marcus
Sacks, William J.
Publisher UCAR/NCAR - Library
Publication Date 2020-10-26T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T18:13:45.328915
Metadata Record Identifier edu.ucar.opensky::articles:23807
Metadata Language eng; USA
Suggested Citation Muntjewerf, Laura, Sellevold, Raymond, Vizcaino, Miren, Ernani da Silva, Carolina, Petrini, Michele, Thayer�Calder, Katherine, Scherrenberg, Meike D. W., Bradley, Sarah L., Katsman, Caroline A., Fyke, Jeremy, Lipscomb, William H., Lofverstrom, Marcus, Sacks, William J.. (2020). Accelerated Greenland ice sheet mass loss under high greenhouse gas forcing as simulated by the coupled CESM2.1-CISM2.1. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7mw2mg5. Accessed 04 April 2025.

Harvest Source