A perspective on the fundamental quality of GPS radio occultation data

Radio occultation (RO) is a promising source of observation for weather and climate applications. However, the uncertainties arising from imperfect retrieval algorithms may weaken the overall confidence in the data and discourage their use. As an alternative approach of assessing the quality of RO data while avoiding the nuisance of retrieval errors, this study proposes to use minimally processed data (measurement) instead of derived RO data. This study compares measured phase paths with their model counterparts, simulated with an effective ray tracer for which the refractive indices along the complete ray path linking the transmitter and the receiver are realistically specified. The comparison of phase measurements with the European Centre for Medium-Range Weather Forecasts (ECMWF) data made in the observation space shows that the RO measurements are of sufficient accuracy to uncover regional-scale systematic errors in ECMWF's operational analysis and the 45-year reanalysis (ERA40), and to clearly depict the error growth of short-term ERA40 forecasts. In the southern hemispheric stratosphere, in particular, the RO measurements served as a robust reference against which both of the two analyses were significantly biased in opposite directions even though they were produced by the same center using virtually the same set of data. The measurement and ECMWF analyses showed a close agreement in the standard deviation except for the regions and heights that the quality of the ECMWF data is controversial. This confirms the high precision of RO measurements and also indicates that the main problem of the ECMWF analyses lies in their systematic error

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links

Related Dataset #1 : ECMWF TOGA Global Advanced Operational Spectral Analysis, daily 1985-2010

Related Dataset #2 : ERA-40 Global Upper Air Model Level Analysis

Related Dataset #3 : ERA-40 Model Level Forecasts

Related Dataset #4 : NCEP ADP Global Upper Air and Surface Weather Observations (PREPBUFR format), May 1997 - Continuing

Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Wee, Tae-Kwon
Kuo, Ying-Hwa
Publisher UCAR/NCAR - Library
Publication Date 2015-10-14T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:03:28.906330
Metadata Record Identifier edu.ucar.opensky::articles:17751
Metadata Language eng; USA
Suggested Citation Wee, Tae-Kwon, Kuo, Ying-Hwa. (2015). A perspective on the fundamental quality of GPS radio occultation data. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d7nz893s. Accessed 04 April 2025.

Harvest Source