A method for retrieving clouds with satellite infrared radiancesusing the particle filter

Ensemble-based techniques have been widely utilized in estimating uncertainties in various problems of interest in geophysical applications. A new cloud retrieval method is proposed based on the particle filter (PF) by using ensembles of cloud information in the framework of Grid-point Statistical Interpolation (GSI) system. The PF cloud retrieval method is compared with the Multivariate Minimum Residual (MMR) method that was previously established and verified. Cloud retrieval experiments involving a variety of cloudy types are conducted with the PF and MMR methods with measurements of infrared radiances on multi-sensors onboard both geostationary and polar satellites, respectively. It is found that the retrieved cloud masks with both methods are consistent with other independent cloud products. MMR is prone to producing ambiguous small-fraction clouds, while PF detects clearer cloud signals, yielding closer heights of cloud top and cloud base to other references. More collections of small-fraction particles are able to effectively estimate the semi-transparent high clouds. It is found that radiances with high spectral resolutions contribute to quantitative cloud top and cloud base retrievals. In addition, a different way of resolving the filtering problem over each model grid is tested to better aggregate the weights with all available sensors considered, which is proven to be less constrained by the ordering of sensors. Compared to the MMR method, the PF method is overall more computationally efficient, and the cost of the model grid-based PF method scales more directly with the number of computing nodes.

To Access Resource:

Questions? Email Resource Support Contact:

  • opensky@ucar.edu
    UCAR/NCAR - Library

Resource Type publication
Temporal Range Begin N/A
Temporal Range End N/A
Temporal Resolution N/A
Bounding Box North Lat N/A
Bounding Box South Lat N/A
Bounding Box West Long N/A
Bounding Box East Long N/A
Spatial Representation N/A
Spatial Resolution N/A
Related Links N/A
Additional Information N/A
Resource Format PDF
Standardized Resource Format PDF
Asset Size N/A
Legal Constraints

Copyright Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.


Access Constraints None
Software Implementation Language N/A

Resource Support Name N/A
Resource Support Email opensky@ucar.edu
Resource Support Organization UCAR/NCAR - Library
Distributor N/A
Metadata Contact Name N/A
Metadata Contact Email opensky@ucar.edu
Metadata Contact Organization UCAR/NCAR - Library

Author Xu, Dongmei
Auligné, Thomas
Descombes, Gaël
Snyder, Chris
Publisher UCAR/NCAR - Library
Publication Date 2016-11-02T00:00:00
Digital Object Identifier (DOI) Not Assigned
Alternate Identifier N/A
Resource Version N/A
Topic Category geoscientificInformation
Progress N/A
Metadata Date 2023-08-18T19:12:16.568820
Metadata Record Identifier edu.ucar.opensky::articles:19272
Metadata Language eng; USA
Suggested Citation Xu, Dongmei, Auligné, Thomas, Descombes, Gaël, Snyder, Chris. (2016). A method for retrieving clouds with satellite infrared radiancesusing the particle filter. UCAR/NCAR - Library. http://n2t.net/ark:/85065/d70v8fjb. Accessed 31 January 2025.

Harvest Source