Identification

Title

Scale-aware and definition-aware evaluation of modeled near-surface precipitation frequency using CloudSat observations

Abstract

CloudSat's 94-GHz Cloud Profiling Radar provides unique near-global observations of precipitation frequency and intensity. Here CloudSat-based diagnostics for near-surface precipitation frequency are implemented in publicly available software that is widely used for climate model evaluation. The new diagnostics are definition aware and scale aware. As a result, the diagnostics enable robust assessment of modeled near-surface precipitation frequency at a range of intensity classes. The new diagnostics are used to evaluate precipitation frequency in a state-of-the-art climate model, the Community Earth System Model version 1 (CESM1). CESM1 rains and snows too frequently, a bias that is especially pronounced for light rain. Conversely, while rare in both observations and CESM1, the heaviest rainfall events occur too infrequently in CESM1. Though the spatial distribution of snowfall events matches observations well, CESM1 also exhibits excessive snow frequency biases. Despite these biases, projected CESM1 changes in reflectivity-based diagnostics provide interesting insights into what a future 94-GHz radar could detect in a warmer world. With 3 degrees C of global warming, a future CloudSat-class mission would detect substantial conversion of snow to rain at midlatitudes, a narrowing of the Tropical Pacific rain belt, increased light rain in subtropics, and increased snow frequency in polar regions. The future CESM1 simulations also provide evidence that present-day spatial and magnitude biases imprint themselves on precipitation frequency changes. In summary, new precipitation frequency diagnostics for a range of precipitation intensities robustly expose climate model biases and inform expectations for observable future precipitation changes in a warming world.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7st7skb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-04-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:13:35.486840

Metadata language

eng; USA