Identification

Title

An Overflow parameterization for the ocean component of the Community Climate System Model

Abstract

The Overflow Parameterization (OFP) for the ocean component of the Community Climate System Model (CCSM) is presented. The ocean component is based on the Parallel Ocean Program Version 2, or POP2, of the Los Alamos National Laboratory (Smith et al., 2010). The OFP has two parts: the method of evaluating overflow properties based on ocean model state, and the modifications to the baroclinic and barotropic solutions to reflect the influence of the overflows. Evaluating overflow properties involves computing source water transport based on regional averages over an interior and source domain. The source overflow is implemented as a sidewall boundary condition on raised bottom topography, which replaces explicitly resolved overflow with the parameterized overflow. The parameterized overflow is assumed to flow through the ridge (implicitly) and to descend unmodified to an entrainment sidewall, where entrainment ambient water is mixed with the source water, producing the final product water. The product density is computed for the mix of source and entrainment waters, and the product injection position is found where neutral buoyancy occurs along a pre-specified product path. In POP2 the baroclinic and barotropic modes are split. Our approach is to solve the baroclinic equations without change but to modify the barotropic equation to include the effect of the parameterized overflows. We assume that the overflow sidewall velocities are total velocities at each time step, and this non-zero sidewall boundary condition is used to modify the barotropic continuity equation, as well as the vertical planar column velocities above each sidewall at source, entrainment and product locations so that local mass conservation is enforced. Overflow tracer advection is done through the source, entrainment and product sidewalls in a conservative manner. The POP2 implementation allows the user to select overflow source, entrainment and product locations and orientations. It allows for more than one product location so that the product depth can adjust to varying forcing. Various parameters can be adjusted, ideally within observational constraints, to yield overflow transports within observational uncertainties. The implementation method should be applicable to z-coordinate ocean models with the baroclinic/barotropic split as in POP2. For a thorough discussion of the climate impacts of OFP, see Danabasoglu et al. (2010).

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7v40tm8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Keyword set

keyword value

EARTH SCIENCE > OCEANS > OCEAN WAVES > GRAVITY WAVES

EARTH SCIENCE SERVICES > MODELS > OCEAN GENERAL CIRCULATION MODELS (OGCM)/REGIONAL OCEAN MODELS

EARTH SCIENCE SERVICES > MODELS > COUPLED CLIMATE MODELS

originating controlled vocabulary

title

U.S. National Aeronautics and Space Administration Global Change Master Directory

reference date

date type

revision

effective date

2021-09-17

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:06:19.281786

Metadata language

eng; USA