Identification

Title

Is it possible to quantify irrigation water‐use by assimilating a high‐resolution satellite soil moisture product?

Abstract

Irrigation is the largest human intervention in the water cycle that can modulate climate extremes, yet irrigation water use (IWU) remains largely unknown in most regions. Microwave remote sensing offers a practical way to quantify IWU by monitoring changes in soil moisture caused by irrigation. However, high-resolution satellite soil moisture data is typically infrequent (e.g., 6-12 days) and thus may miss irrigation events. This study evaluates the ability to quantify IWU by assimilating high-resolution (1 km) SMAP-Sentinel 1 remotely sensed soil moisture with a physically based land surface model (LSM) using a particle batch smoother (PBS). A suite of synthetic experiments is devised to evaluate different error sources. Results from the synthetic experiments show that unbiased simulations with known irrigation timing can produce an accurate irrigation estimate with a mean annual bias of 0.45% and a mean R-2 of 0.97, relative to observed IWU. Unknown irrigation timing can significantly deteriorate the model performance, resulting in an increased mean annual bias to 23% and decreased mean R-2 to 0.36. Adding random noise to synthetic observations does not significantly decrease model performance except for the experiments with low observation frequency (>12 days). In real-world experiments, the PBS data assimilation approach underestimates observed IWU by 18.6% when the timing of IWU is known. IWU estimates are consistently significantly higher over irrigated pixels compared to the non-irrigated pixels, indicating data assimilation skillfully conveys irrigation signals to the LSM.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75b06ff

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:20:30.285975

Metadata language

eng; USA