Identification

Title

Direct online mass spectrometry measurements of ice nucleating particles at a California coastal site

Abstract

The formation of ice in clouds can strongly impact cloud properties and precipitation processes during storms, including atmospheric rivers. Sea spray aerosol (SSA) particles are relatively inefficient as ice nucleating particles (INPs) compared to mineral dust. However, due to the vast coverage of the Earth's surface by the oceans, a number of recent studies have focused on identifying sources of marine INPs, particularly in regions lacking a strong influence from dust. This study describes the integration, validation, and application of a system coupling a continuous flow diffusion chamber with a single particle mass spectrometer using a pumped counterflow virtual impactor to remove nonnucleated particles and selectively measure the composition of INPs with a detection efficiency of 3.10 x 10(-4). In situ measurements of immersion freezing INP composition were made at a coastal site in California using the integrated system. Mineral dust particles were the most abundant ice crystal residual type during the sampling period and found to be ice active despite having undergone atmospheric processing. SSA were more abundant in ambient measurements but represented only a minor fraction of the ice crystal residual population at -31 degrees C. Notably, the SSA particles that activated were enriched with organic nitrogen species that were likely transferred from the ocean. Calculations of ice nucleation active site densities were within good agreement with previous studies of mineral dust and SSA.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7s185tg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-11-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:08:39.098951

Metadata language

eng; USA