Identification

Title

Accuracy assessment of the quiet-time ionospheric F2 peak parameters as derived from COSMIC-2 multi-GNSS radio occultation measurements

Abstract

The Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2) mission was launched into a low-inclination (24 degrees) orbit on June 25, 2019. Six satellites, each with an advanced Tri-GNSS Radio-Occultation Receiver System (TGRS), provide a global and uniform data coverage of the equatorial region with several thousand electron density profiles daily. The COSMIC-2 electron density profiles, and specifically the derived ionospheric F2 peak parameters, are properly validated in this study with reliable "truth" observations. For this purpose, we used manually scaled ionograms from 29 ground-based ionosondes located globally at low and middle latitudes. For this validation campaign, we considered only geomagnetically quiet conditions in order to establish benchmark level of the new mission's ionospheric observation quality and to evaluate the operational capability of the COSMIC-2 Radio Occultation (RO) payload at the background of normal day-to-day variability of the ionosphere. For reliable colocations between two independent techniques, we selected only COSMIC-2 RO profiles whose F2 peak point coordinates were within 5 degrees of the closest ionosonde. Our comparison of the ionospheric F2 peak height (hmF2) derived from COSMIC-2 RO and ground-based ionosonde measurements showed a very good agreement, with a mean of similar to 5 and similar to 2 km at low and middle latitudes, respectively, while RMS error was of similar to 23 and similar to 14 km, respectively. That range corresponds to a deviation of only 6-9% from the reference, ionosonde observations. Examination of representative collocation events with multiple (2-5) simultaneous RO tracks near the same ionosonde with different RO geometry, multi-satellite and multi-GNSS combination give us observational evidence that COSMIC-2 RO-based EDPs derived from GPS and GLONAS links show good self-consistency in terms of the ionospheric F2 peak values and electron density profile shape. We can conclude that COSMIC-2 provides high quality data for specification the ionospheric electron density at the F2 peak region.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7542rzg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-02-18T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:30:11.927947

Metadata language

eng; USA