Identification

Title

A one-step-ahead ensemble Kalman smoothing approach toward estimating the tropical cyclone surface-exchange coefficients

Abstract

In this study, a one-step-ahead ensemble Kalman smoother (EnKS) is introduced for the purposes of parameter estimation. The potential for this system to provide new constraints on the surface-exchange coefficients of momentum (Cd) and enthalpy (Ck) is then explored using a series of observing system simulation experiments (OSSEs). The surface-exchange coefficients to be estimated within the data assimilation system are highly uncertain, especially at high wind speeds, and are well known to be important model parameters influencing the intensity and structure of tropical cyclones in numerical simulations. One major benefit of the developed one-step-ahead EnKS is that it allows for simulta-neous updates of the rapidly evolving model state variables found in tropical cyclones using a short assimilation window and a long smoother window for the parameter updates, granting sufficient time for sensitivity to the parameters to develop. Overall, OSSEs demonstrate potential for this approach to accurately constrain parameters controlling the ampli-tudes of Cd and Ck, but the degree of success in recovering the truth model parameters varies throughout the tropical cyclone life cycle. During the rapid intensification phase, rapidly growing errors in the model state project onto the parameter updates and result in an overcorrection of the parameters. After the rapid intensification phase, however, the parameters are correctly adjusted back toward the truth values. Last, the relative success of parameter estimation in re-covering the truth model parameter values also has sensitivity to the ensemble size and smoothing forecast length, each of which are explored.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d71j9fpq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:46.938596

Metadata language

eng; USA