Identification

Title

The roles of mineral dust as cloud condensation nuclei and ice nuclei during the evolution of a hail storm

Abstract

Aerosols play important roles in the evolution of deep convective systems like hailstorms. In this study, the heterogeneous ice nucleation schemes have been improved in the Weather Research and Forecasting model coupled with a spectral bin microphysics (WRF-SBM), which considered aerosols acting as ice nuclei (IN). A hail storm occurred around Tianshan mountains, northwestern China, was simulated with updated WRF-SBM, and the results have been compared with satellite observations. Further, four sensitive simulation tests were conducted with different cloud condensation nuclei (CCN) and IN concentrations to investigate their respective roles during the evolution of the hailstorm. The increase in CCN concentration resulted in larger cloud droplet concentration and cloud water content, as well as enhanced condensational growth, which released more latent heat and led to stronger updraft at lower levels. The increase in IN number almost did not affect warm processes but led to larger ice crystal concentration and enhanced Bergeron process. Larger CCN concentration led to larger supercooled liquid water content, which in turn contributed to the enhanced hail growth by more efficient drop-ice collisions and led to larger size of hail particles, while larger IN number reduced the size of graupel and suppressed the growth of hailstones. An analysis of the mobility of hail indicated increased frequency of larger hail with stronger sedimentation induced by more CCN. A further three ensemble runs with random perturbations on initial temperature and humidity were performed for each aerosol scenario, and the results suggested the robustness of simulated CCN and IN effects.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7zc86c2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-12-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:34:07.744714

Metadata language

eng; USA