Observed increase of TTL temperature and water vapor in polluted clouds over Asia
Satellite observations are analyzed to examine the correlations between aerosols and the tropical tropopause layer (TTL) temperature and water vapor. This study focuses on two regions, both of which are important pathways for the mass transport from the troposphere to the stratosphere and over which Asian pollution prevails: South and East Asia during boreal summer and the Maritime Continent during boreal winter. Using the upper-tropospheric carbon monoxide measurements from the Aura Microwave Limb Sounder as a proxy of aerosols to classify ice clouds as polluted or clean, the authors find that polluted clouds have a smaller ice effective radius and a higher temperature and specific humidity near the tropopause than clean clouds. The increase in water vapor appears to be related to the increase in temperature, as a result of increased aerosols. Meteorological differences between the clouds cannot explain the differences in temperature and water vapor for the polluted and clean clouds. The authors hypothesize that aerosol semidirect radiative heating and/or changes in cirrus radiative heating, resulting from aerosol microphysical effects on clouds, may contribute to the increased TTL temperature and thus increased water vapor in the polluted clouds.
document
http://n2t.net/ark:/85065/d7v125c0
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2011-06-01T00:00:00Z
Copyright 2011 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:47:09.514317