Identification

Title

A climatology of planetary wave-driven mesospheric inversion layers in the extratropical winter

Abstract

Mesospheric inversion layers (MILs) are a useful diagnostic to simultaneously investigate middle atmosphere radiation, chemistry, and dynamics in high-top general circulation models. Climatologies of long-lived extratropical winter MILs observed by the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instruments are compared to MILs in the Whole Atmosphere Community Climate Model (WACCM). In general, MIL location, amplitude, and thickness statistics in WACCM are in good agreement with the observations, though WACCM middle- and high-latitude winter MILs occur 30%-50% more often than in MLS and SABER. This work suggests that planetary wave-driven MILs may form as high as 90 km. In the winter, MILs display a wave-1 pattern in both hemispheres, forming most often over the region where the climatological winter stratospheric anticyclones occur. These MILs are driven by the decay of vertically propagating planetary waves in the mesospheric surf zone in both observations and in the model. At the base of polar inversions there is climatological local ascent and cooling situated atop the stratospheric anticyclones, which enhances the cold base of the MILs near 60 km and 120°E longitude.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7bk1djm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-01-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2015 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:06:07.136658

Metadata language

eng; USA