Identification

Title

How long is long enough when measuring fluxes and other turbulence statistics?

Abstract

We determine how long a time series must be to estimate covariances and moments up to fourth order with a specified statistical significance. For a given averaging time T there is a systematic difference between the true flux or moment and the ensemble average of the time means of the same quantities. This difference, which we call the systematic error, is a decreasing function of T tending to zero for T ? ?. The variance of the time mean of the flux or moment, the so-called error variance, represents the random scatter of individual realizations which, when T is much larger the integral time scale T of the time series, is also a decreasing function of T. This makes it possible to assess the minimum value of T necessary to obtain systematic and random errors smaller than specified values. Assuming that the time series are either Gaussian processes with exponential correlation functions or a skewed process derived from a Gaussian, we obtain expressions for the systematic and random errors. These expressions show that the systematic error and the error variance in the limit of large T are both inversely proportional to T which means that the random error, i.e. the square root of the error variance, will in this limit be larger than the systematic error. We demonstrate theoretically, as well as experimentally with aircraft data from the convective boundary layer over the ocean and over land, that the assumption that the time series are Gaussian leads to underestimation of the random errors, while derived processes with a more realistic skewness and kurtosis give better estimates. For fluxes we estimate the systematic and random errors when the time series are sampled instantaneously, but the samples separated in time by an amount ?. We find that the random error variance and the systematic error increase by less than 8% over continuously-sampled data if ? is no larger than the integral scale obtained from the flux time series and the co-spectrum, respectively.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7d799t5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Keyword set

keyword value

EARTH SCIENCE SERVICES > DATA ANALYSIS AND VISUALIZATION > STATISTICAL APPLICATIONS

EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > WIND DYNAMICS > TURBULENCE

originating controlled vocabulary

title

U.S. National Aeronautics and Space Administration Global Change Master Directory

reference date

date type

revision

effective date

2021-09-17

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

1993-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:07:10.396291

Metadata language

eng; USA