Identification

Title

The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

Abstract

We have analysed the sensitivity of the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model and observations from in situ and satellite instruments. We show that the model ozone distribution is consistent with observations from the Pico Mountain Observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES) and Infrared Atmospheric Sounding Instrument (IASI) satellite instruments. Mean biases between the model and observed ozone mixing ratio in the free troposphere were less than 10 ppbv. We used the adjoint of GEOS-Chem to show the model ozone distribution in the free troposphere over Maritime Canada is largely sensitive to NOx emissions from biomass burning sources in Central Canada, lightning sources in the central US, and anthropogenic sources in the eastern US and south-eastern Canada. We also used the adjoint of GEOS-Chem to evaluate the Fire Locating And Monitoring of Burning Emissions (FLAMBE) inventory through assimilation of CO observations from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. The CO inversion showed that, on average, the FLAMBE emissions needed to be reduced to 89% of their original values, with scaling factors ranging from 12% to 102%, to fit the MOPITT observations in the boreal regions. Applying the CO scaling factors to all species emitted from boreal biomass burning sources led to a decrease of the model tropospheric distributions of CO, PAN, and NOx by as much as −20 ppbv, −50 pptv, and −20 pptv respectively. The modification of the biomass burning emission estimates reduced the model ozone distribution by approximately −3 ppbv (−8%) and on average improved the agreement of the model ozone distribution compared to the observations throughout the free troposphere, reducing the mean model bias from 5.5 to 4.0 ppbv for the Pico Mountain Observatory, 3.0 to 0.9 ppbv for ozonesondes, 2.0 to 0.9 ppbv for TES, and 2.8 to 1.4 ppbv for IASI.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7g161jp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2012-02-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:53:07.518880

Metadata language

eng; USA