A comparison of the vorticity dynamics governing the oceanic bomb cyclone of 4–5 January 1989 and the super derecho of 8 May 2009
Convection-allowing simulations of two warm seclusion cyclones are used to elucidate the vorticity dynamics that contribute to intensification of these systems. The rapidly intensifying oceanic "bomb'' cyclone on 4-5 January 1989 and the super derecho on 8 May 2009 are the subject of this study. While these systems occupy different spatial scales, they both acquire characteristics of a warm seclusion cyclone. The aim of this study is to compare the basic structure and determine the dynamics driving increases in system-scale vertical vorticity during the intensification of these systems. Results from a vorticity budget show that system-scale stretching and the lateral transport of vertical vorticity to the cyclone center contribute to increases of system-scale low-level vertical vorticity during the intensification of the oceanic cyclone. The intercomparison of the oceanic cyclone and the super derecho shows that the relative contributions to increases in system-scale vertical vorticity by stretching and tilting as a function of height differ among the two cases. However, the lateral transport of vertical vorticity to the cyclone center is a key contributor to increases in low-level system-scale vertical vorticity for both cases. We hypothesize that this process may be common among a wide array of intense cyclonic systems across scales ranging from warm seclusion extratropical cyclones to some mesoscale convective systems.
document
http://n2t.net/ark:/85065/d79s1vch
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2020-09-01T00:00:00Z
Copyright 2020 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:11:55.418792