Identification

Title

Insights into atmospheric predictability through global convection-permitting model simulations

Abstract

Global convection-permitting models enable weather prediction from local to planetary scales and are therefore often expected to transform the weather prediction enterprise. This potential, however, depends on the predictability of the atmosphere, which was explored here through identical twin experiments using the Model for Prediction Across Scales. The simulations were produced on a quasi-uniform 4-km mesh, which allowed the illumination of error growth from convective to global scales. During the first two days, errors grew through moist convection and other mesoscale processes, and the character of the error growth resembled the case of k(-5/3) turbulence. Between 2 and 13 days, errors grew with the background baroclinic instability, and the character of the error growth mirrored the case of k(-3) turbulence. The existence of an error growth regime with properties similar to k(-5/3) turbulence confirmed the radical idea of E. N. Lorenz that the atmosphere has a finite limit of predictability, no matter how small the initial error. The global-mean predictability limit of the troposphere was estimated here to be around 2-3 weeks, which is in agreement with previous work. However, scale-dependent predictability limits differed between the divergent and rotational wind component and between vertical levels, indicating that atmospheric predictability is a more complex problem than that of homogeneous, isotropic turbulence. The practical value of global cloud-resolving models is discussed in light of the various aspects of atmospheric predictability.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7w95cz9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 The American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:15:15.048755

Metadata language

eng; USA