Large-eddy simulation of the onset of the sea breeze
This paper describes results from a large-eddy simulation (LES) model used in an idealized setting to simulate the onset of the sea breeze. As the LES is capable of simulating boundary layerscale, three-dimensional turbulence along with the mesoscale sea-breeze circulation, a parameterization of the planetary boundary layer was unnecessary. The basic experimental design considers a rotating, uniformly stratified, resting atmosphere that is suddenly heated at the surface over the "land" half of the domain. To focus on the simplest nontrivial problem, the diurnal cycle, effects of moisture, interactions with large-scale winds, and coastline curvature were all neglected in this study. The assumption of a straight coastline allows the use of a rectangular computational domain that extends to 50 km on either side of the coast, but only 5 km along the coast, with 100-m grid intervals so that the small-scale turbulent convective eddies together with the mesoscale sea breeze may be accurately computed. Through dimensional analysis of the simulation results, the length and velocity scales characterizing the simulated sea breeze as functions of the externally specified parameters are identified.
document
http://n2t.net/ark:/85065/d7rb74wc
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2007-12-01T00:00:00Z
Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:38:57.146305