Identification

Title

Deep learning forecast uncertainty for precipitation over the western United States

Abstract

Reliably quantifying uncertainty in precipitation forecasts remains a critical challenge. This work examines the application of a deep learning (DL) architecture, Unet, for postprocessing deterministic numerical weather predictions of precipitation to improve their skills and for deriving forecast uncertainty. Daily accumulated 0-4-day precipitation fore-casts are generated from a 34-yr reforecast based on the West Weather Research and Forecasting (West-WRF) mesoscale model, developed by the Center for Western Weather and Water Extremes. The Unet learns the distributional parameters associated with a censored, shifted gamma distribution. In addition, the DL framework is tested against state-of-the-art benchmark methods, including an analog ensemble, nonhomogeneous regression, and mixed-type meta-Gaussian distribu-tion. These methods are evaluated over four years of data and the western United States. The Unet outperforms the benchmark methods at all lead times as measured by continuous ranked probability and Brier skill scores. The Unet also produces a reliable estimation of forecast uncertainty, as measured by binned spread-skill relationship diagrams. Addition-ally, the Unet has the best performance for extreme events (i.e., the 95th and 99th percentiles of the distribution) and for these cases, its performance improves as more training data are available. SIGNIFICANCE STATEMENT: Accurate precipitation forecasts are critical for social and economic sectors. They also play an important role in our daily activity planning. The objective of this research is to investigate how to use a deep learning architecture to postprocess high-resolution (4 km) precipitation forecasts and generate accurate and reliable forecasts with quantified uncertainty. The proposed approach performs well with extreme cases and its per-formance improves as more data are available in training.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7cr5zcj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:28:12.330783

Metadata language

eng; USA