Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer
The nighttime high-latitude stably stratified atmospheric boundary layer (SBL) is computationally simulated using high–Reynolds number large-eddy simulation on meshes varying from 2003 to 10243 over 9 physical hours for surface cooling rates Cr = [0.25, 1] K h-1. Continuous weakly stratified turbulence is maintained for this range of cooling, and the SBL splits into two regions depending on the location of the low-level jet (LLJ) and . Above the LLJ, turbulence is very weak and the gradient Richardson number is nearly constant: . Below the LLJ, small scales are dynamically important as the shear and buoyancy frequencies vary with mesh resolution. The heights of the SBL and Ri noticeably decrease as the mesh is varied from 2003 to 10243. Vertical profiles of the Ozmidov scale show its rapid decrease with increasing , with over a large fraction of the SBL for high cooling. Flow visualization identifies ubiquitous warm-cool temperature fronts populating the SBL. The fronts span a large vertical extent, tilt forward more so as the surface cooling increases, and propagate coherently. In a height–time reference frame, an instantaneous vertical profile of temperature appears intermittent, exhibiting a staircase pattern with increasing distance from the surface. Observations from CASES-99 also display these features. Conditional sampling based on linear stochastic estimation is used to identify coherent structures. Vortical structures are found upstream and downstream of a temperature front, similar to those in neutrally stratified boundary layers, and their dynamics are central to the front formation.
document
http://n2t.net/ark:/85065/d71r6s52
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2016-04-01T00:00:00Z
Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:00:36.032102