On multidecadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3
Multidecadal variability of the Atlantic meridional overturning circulation (MOC) is investigated diagnostically in the NCAR Community Climate System Model version 3 (CCSM3) present-day simulations, using the highest (T85 × 1) resolution version. This variability has a 21-yr period and is present in many other ocean fields in the North Atlantic. In MOC, the oscillation amplitude is about 4.5 Sv (1 Sv ≡ 10⁶ m³ s⁻¹), corresponding to 20% of the mean maximum MOC transport. The northward heat transport (NHT) variability has an amplitude of about 0.12 PW, representing 10% of the mean maximum NHT. In sea surface temperature (SST) and sea surface salinity (SSS), the peak-to-peak changes can be as large as 6°–7°C and 3 psu, respectively. The Labrador Sea region is identified as the deep-water formation (DWF) site associated with the MOC oscillations. In contrast with some previous studies, temperature and salinity contributions to the total density in this DWF region are almost equal and in phase. The heat and freshwater budget analyses performed for the DWF site indicate a complex relationship between the DWF, MOC, North Atlantic Oscillation (NAO), and subpolar gyre circulation anomalies. Their complicated interactions appear to be responsible for the maintenance of this multidecadal oscillation. In these interactions, the atmospheric variability associated with the model’s NAO plays a prominent role. In particular, the NAO modulates the subpolar gyre strength and contributes to the formation of the temperature and salinity anomalies that lead to positive/negative density anomalies at the DWF site. In addition, the wind stress curl anomalies occurring during the transition phase between the positive and negative NAO states produce fluctuations of the subtropical-subpolar gyre boundary, thus creating midlatitude SST and SSS anomalies. Comparisons with observations show that neither the pattern nor the magnitude of this dominant SST variability is realistic.
document
http://n2t.net/ark:/85065/d7w0963f
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2008-11-01T00:00:00Z
Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:39:05.534956