Identification

Title

Quasi two day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere

Abstract

Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)—a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5–10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N2, as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75q4x3z

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:55:39.516841

Metadata language

eng; USA